CASE STUDY

GREEN ROOF'S THERMAL PERFORMANCE INTROPICAL CLIMATE

An experiment conducted by the University of Moratuwa, Sri Lanka (a tropical climate nation) indicates that houses experience a maximum outdoor and indoor temperature of 32 °C and 29.5 °C respectively. By implementing the green roof system, the outdoor and indoor temperatures are decreased by 8 °C and 3 °C respectively.

STACK VENTILATION STRATEGIES

The C. K. Choi Building in Vancouver does not have any air conditioning system within the building. Raised roof monitors are present to draw air in through the vents below and allow stack ventilation to occur. The stack effect induced by the pressure difference present at the lower and upper outlet areas extracts hot air out of the building, thus lowering indoor dry bulb temperature.

VERTICAL LIVING WALL SYSTEM

An experiment conducted by HortPark, Singapore, shows 8 types of vertical greenery systems with different plant typologies. Each vertical wall system gives varying results in terms of temperature drop, and it was found that systems 3 and 4 give the most temperature drop, which is 10.94 °C and 4 to 12 °C respectively in daytime

GREENROOF

A green roof or living roof is a roof of a building that is partially or completely covered with vegetation and a growing medium, planted over a waterproofing membrane. The green roof protects the building from direct solar heat, thus decreasing heat radiation to the interior space

(1) OPERABLE FLOOR TO CEILING

Operable louvre windows allow cold

air to enter the space when they are

opened, and can be closed manually to prevent hot air or rain

(2) TEMPEREDGLASS WINGWALL

The wing walls extend from the

existing wall to function as wind

scoops, drawing in wind which

blows from the North Northeast

Cold Air

Trellising walls act as shading device and reduce the temperature of the wind flowing through it via evapotranspiration of the climber

direction.

(3) TRELLISING WALL

from entering the space.

LOUVRE WINDOWS

The thermal insulation layers contribute to the high thermal resistance of the green roof, thus lowering the U-value of the roof by 0.49233 W/m²k

CROSS VENTILATION

North Northeast Wind (Lower frequency)

Evaporative cooling

Evapotranspiration carried out by the vegetation will take away some heat from

The high thermal resistance of the insulation layers slows down the heat transfer to

Material	Thickness (m)	Thermal Conductivity [W/(mK)]	Thermal Resistance [m ² C/W]	U- Value [W/m²l
Outside Surface			0.059	
Vegetation Layer	_	<u> </u>	-	
Soil Layer	0.345	0.14	2.46	
Filter Layer	0.005	0.06	0.08	
0.00	0.05	0.03	1.67	
Thermal Insulation Layer	0.1	0.03	3.33	1
Drainage Layer	0.06	0.08	0.75	
Waterproof Layer	0.07	0.17	0.41	
Moisture Barrier	0.003	0.055	0.55	
Concrete Slab	0.05	1,16	0.04	
Concrete Floor	0.2	0.39	0.51	
Inside Surface	5	650	0.132	
		1 mar 1 ha 1 / 4	2.222	0.100000001

The soil medium contributes to the thermal resistance of the roof, which slows down

Thermal Insulation Layers

ine conciere tool	
Material	
udeldo Crudano	$\overline{}$

Outside Surface			0.059	
Vegetation Layer	-	_	_	
Soil Layer	0.345	0.14	2.46	
Filter Layer	0.005	0.06	0.08	
0.6%	0.05	0.03	1.67	
Thermal Insulation Layer	0.1	0.03	3.33	
Drainage Layer	0.06	0.08	0.75	
Waterproof Layer	0.07	0.17	0.41	
Moisture Barrier	0.003	0.055	0.55	
Concrete Slab	0.05	1.16	0.04	
Concrete Floor	0.2	0.39	0.51	
Inside Surface	0	0000	0.132	
		Total	9.991	0.100090081

STACK VENTILATION

As the hot air within the space escapes from the raised roof monitors, the pressure difference allows the cold exterior air

Stack ventilation allows considerable amounts of hot air to be expelled

from the space in the absence of ventilation, thus lowering the indoor dry bulb temperature naturally. The system relies on the differences in air

Raised roof monitors' interiors are painted black to increase

their ability to absorb heat and

pull hot air upwards

Cold air dragged in

to be dragged into the space.

Green Roof

ISOMETRIC VIEW

Polycarbonate

Roofing

Shaded Walkway

The key factor of the living wall's cooling system is through its substrate (soil). The high thermal resistance of the substrate resists heat flow into the interior space.

Commercial Block

DECUDE

Material	Thicknes s (m)	Thermal Conductivity [W/(mK)]	Thermal Resistance [m ² C/W]	U- Value [W/m²k]
Outside Surface			0.055	
White Paint	0.0002	\$ - \$	_	
Cement Plaster	0.01	0.72	0.001	
Concrete	0.2	1	0.2	
Cement Plaster	0.01	0.72	0.001	
White Paint	0.0002	_	_	
Inside Surface	0.0000000000000000000000000000000000000		0.123	
		Total	0.38	2 4315789

The low thermal resistance of the concrete walls allows them to have a higher U-value.

Material	Thicknes s (m)	Thermal Conductivity [W/(mK)]	Thermal Resistance [m²C/W]	U- Value [W/m²k]
Outside Surface			0.059	
Vegetation Layer	10-0	# =	-	
Soil	0.2	1.45	0.137931034	
White Paint	0.0002		_	
Cement Plaster	0.01	0.72	0.001	
Concrete	0.2	1	0.2	
Cement Plaster	0.01	0.72	0.001	
White Paint	0.0002		_	
Inside Surface			0.153	
		Total	0.551931034	1.8118206

Raised Roof Monitor

Trellising Wall

The living wall, which functions as an insulation layer, provides a higher thermal resistance and lowers the concrete wall's U-value by 0.81976 W/m²k.

CONVECTION

temperatures and densities within CoDA.

Convection removes hot air to the exterior environment in the absence of wind breezes, thus lowering the indoor dry bulb temperature. The louvered windows increase the rate of hot air replaced by cool air within CoDA

Heat from solar radiation is absorbed and removed by the climber plants via evapotranspiration. The trellising walls act as a shading device, yet at the same time allowing adequate amount of natural light to penetrate and illuminate the space beneath

School of Architecture, Building and Design Building Science BLD60803 Tutor : Mr Edwin Chan Year Liong Members : Tech Jun Xiang 0322099

ad Mirza Qayyum Bin Mohd Shariff 0324031 Tang Ying Jien 0322357 Tan Min Chuen 0322938 Ng Kwang Zhou 0322802 Lim Woo Leon 0322180 Liew Cherng Qing 0322613 Phares Phung